999 resultados para Gluten content


Relevância:

60.00% 60.00%

Publicador:

Resumo:

小麦加工品质改良已成为我国小麦育种的主要目标之一。特别是我国加入WTO以后,对小麦产品的质量提出了更高的要求,小麦品质改良的任务将更加艰巨和重要,小麦胚乳蛋白是影响小麦加工品质性状的重要因素。因此,深入了解小麦胚乳蛋白对加工品质性状的影响及其分子基础,为品质改良提供理论依据和科学指导,对加速我国小麦品质育种和优质小麦生产具有重要意义。本研究选用在麦谷蛋白5个基因位点(Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3)上均含不同等位基因的小麦品种99G45和京771及Pm97034和京771杂交F9代共164个麦谷蛋白纯合系,及228个中国推广普通小麦品种和高代育成品系为试材,研究了麦谷蛋白Glu-1和Glu-3位点基因等位变异对籽粒蛋白、湿面筋含量、Zeleny沉降值和SDS沉降值间的关系;本研究还利用小麦A、B和D基因组中低分子量麦谷蛋白亚基(LMW-GS)基因特异引物,通过PCR方法克隆了1个Glu-A3位点和3个Glu-B3位点LMW-GS基因片段,在此基础上分析了不同等位基因对品质造成差异的分子基础;另外,本研究对中国近年推广的部分品种和育成的高代品系资源的多样性进行了分析。现将主要研究结果简述如下: 1. 对来自三个麦区的148份材料的醇溶蛋白组成进行了分析,结果表明,各麦区醇溶蛋白模式具有较大差异。在ω区,A7、B、E、F、G、J、P、Q、S和U仅存在于西南秋播麦区;A3、M、N、R、W和X仅存在于黄淮特种麦区;K仅存在于北方冬麦区;A6是北方冬麦区出现频率最高的带型模式,而西南秋播麦区中D出现的频率最高。ω-区的E、H和M几种模式是以前国内外未曾报道的。且初步确定,这些模式对品质性状具有正效应。至于γ区,A、B、D、E和F在各区均有出现,其中B和E在各区出现的频率都很高,在26.1-39.6%之间。相反,H 仅出现在黄淮特种麦区,J仅限于西南秋播麦区。对于β-区醇溶蛋白,B型模式在所有区中都相当高,而模式A仅存在于第三区.对于α-区,模式A在Ⅲ区而模式D在Ⅱ区出现的频率很高。1BL.1RS易位系在中国小麦品种中出现频率高达41.2%,在I, II和Ⅲ麦区的出现频率分别为 45.5、43.5和35.2%。各生态区模式的差异可能是品种适应不同生态条件和人为选择的结果,但这有待进一步证明。由于醇溶蛋白位点(Gli-1)与LMW-GS位点(Glu-3)紧密连锁,本结果可为下面确定普通小麦LMW-GS等位基因变异所用。 2. 利用Gli-1与Glu-3的紧密连锁,以228个小麦品种/系为材料,首次对中国小麦品种麦谷蛋白亚基的6个位点进行综合分析,研究小麦籽粒蛋白与品质性状间的关系,结果表明6个高分子量(HMW)和低分子量(LMW)麦谷蛋白位点对蛋白质含量的效应大小为,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3;对GMP含量的效应大小为, Glu-A3>Glu-B3>Glu-D1> Glu-B1>Glu-A1>Glu-D3;对湿面筋含量的效应大小为, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1;对Zeleny沉降值的效应大小为, Glu-A1> Glu-B3>Glu-D3>Glu-D1>Glu-B1>Glu-A3;对SDS沉降值的效应大小为, Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1。对蛋白含量而言,各位点的最佳组合方式为1、17+18、5+10、Glu-A3e、Glu-B3g、Glu-D3b;对湿面筋含量而言,各位点的最佳组合方式为1、6+8、5+10、Glu-A3d、Glu-B3c、Glu-D3b;对Zeleny沉降值而言,各位点的最佳组合方式为N、17+18、5+10、Glu-A3d、Glu-B3d、Glu-D3b;对SDS沉降值而言,各位点的最佳组合方式为1、7+8、2.2+12、Glu-A3b、Glu-B3g、Glu-D3b。另外,分析了稀有亚基对5+12与2.2+12与品质性状的关系,认为5+12对品质有负效应,2.2+12对品质有正效应。在品质育种时,应对优异组合或优异亚基加以利用。 3. 首次利用重组自交系(RILs)为材料,研究麦谷蛋白亚基表达量与品质性状的关系,通过对重组自交系中各HMW-GS表达量的分析,认为,就单个亚基的表达量而言,7亚基最高;其次为2亚基、5亚基、12亚基和10亚基;亚基9和1的表达量最小;N亚基不表达。对成对出现的亚基对而言,x型和y型亚基的总表达量2+12>5+10>7+9>17+18。就单个亚基与品质性状的关系而言,仅有10亚基的表达量与蛋白含量的相关性达5%的显著水平,2亚基的表达量与湿面筋含量呈负相关,显著水平也达5%,其余单个亚基对品质性状均无显著影响;就x型/y型亚基的比例来看,2/12和5/10对湿面筋含量都有显著的负效应;对某一位点等位基因控制的亚基表达总量来看,2+12对SDS沉降值有显著负效应。另外,本研究得出:2+12的亚基对的负效应主要体现在2亚基上,且在同一位点上,x型亚基的表达量大于y型。所以推导稀有亚基组合2+10很可能也是劣质亚基。 4. 以 Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3作为5个因素对99G45/京771和Pm97034/京771杂交后代的蛋白质含量和SDS沉降值进行多因素方差分析。结果表明,Glu-A1和Glu-D3对蛋白含量的加性效应达5%显著水平;Glu-D1 * Glu-D3对蛋白质含量的互作效应也达5%显著水平;其余位点的加性和互作效应对蛋白质含量的影响均不显著。对SDS 沉降值而言,Glu-D1的加性效应最大,贡献率为4.2 % ,达1 %显著水平,其次是Glu-B1位点,贡献率为3.3% ,达5%显著水平。其余位点对SDS 沉降值的加性和互作效应均未达5%显著水平。总体而言, 各位点对蛋白含量的效应大小为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3;对SDS沉降值的效应大小为Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。Glu-D1和Glu-D3位点上等位基因变异对蛋白含量有显著或极显著影响,含Glu-D1d和Glu-D3 GD、Glu-D3 JD基因的株系分别比含Glu-D1a和Glu-D3 PD基因的株系有较高的蛋白含量;在该遗传背景下,麦谷蛋白各基因位点对蛋白含量的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9>17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。对SDS沉降值的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9=17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。所以,对蛋白含量和SDS沉降值均较好的组合为1,7+9,5+10,GB,GD。 5. 因为GB和PB对品质的效应有显著差异,选取LMW-GS位点特异扩增引物对京771、99G45和Pm97034的Glu-B3位点进行扩增,结果得到三个不一样的扩增片段(Genebank号为DQ539657-DQ539659),得到的基因片段与Genebank中已报道的同类序列高度同源。通过克隆片段组成的分析,发现对Pm97034的序列较京771和99G45段少一个7氨基酸的重复单元,这可能是它较另外两个片段对面筋强度影响小的主要原因;另外,在99G45的序列中,124位处出现L(亮氨酸)代替P(脯氨酸),158位处出现了T(苏氨酸)代换M(蛋氨酸),这可能是99G45Glu-B3位点序列对SDS沉降值的效应显著优于Pm97034的原因。 6.通过对RILs各位点同普通小麦品种(系)各位点与品质关系的比较,发现对SDS沉降值的效应,各位点在不同研究材料中是不同的,普通小麦中:Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1,RILs中:Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。利用重组自交系材料(完全排除了1BL/1RS易位干扰)所得到的结果与Gupta and MacRitchie (1994)所得结论一致。进一步证实了1BL/1RS易位对小麦品质的重要影响。对蛋白含量而言,普通小麦品种(系)中,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3,RILs中,Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3,和对SDS沉降值的效应一样,推断在非1BL/1RS易位的情况下,各位点对其效应应为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3。 对同一位点的等位基因而言,普通小麦和重组自交系中Glu-A1和Glu-D1上的等位基因对品质性状的贡献是一致的,但Glu-B1上的等位基因对SDS沉降值的贡献发生了变化,普通小麦中17+18>7+9,RILs中7+9>17+18,这可能也是1BL/1RS造成的。 Baking quality improved is one of the main object of wheat bread in China. The overall objective of the present studies was to increase the understanding about protein quality in wheat, i.e. to make it possible to improve the production of wheat with desired quality for different end-uses. With the analysis of gluten protein in RILs, 99G45/Jing 771 and Pm97034/Jing, and 228 wheat cultivars or lines in China, the correlations between glutenin compositions and protein content, glutenin macropolymer(GMP), wet gluten content, Zeleny sedimentation value and SDS sedimentation value contentand breadmaking quality were studied. Also a rapid and efficient detection method of geneticpolymorphism at Glu-B3 loci in wheat was established using polymerase chain reaction(PCR).The results obtained were as follows: 1. Cultivated Chinese wheat germplasm has been a valuable genetic resource in international plant breeding. Patterns of gliadin among cultivated Chinese accessions are unknown, despite the proven value and potential novelty. The objective of this work was to analyse the diversity within improved Chinese wheat germplasm. The electrophoretic banding patterns of gliadin in common wheat cultivars and advanced lines were determined by acid-polyacrylamide gel electrophoresis. For 148 leading commercial cultivars and promising advanced lines used in our study, 48 patterns were identified, 29 corresponding to ω-gliadin, 9 to γ-gliadin, 5 to β-gliadin and 5 to α-gliadin. The most frequent patterns were A6 in ω; B in γ; B in β and A in the region of α. 116 band types appeared in the148 samples: 94 accessions had unique gliadin types, and 22 gliadin types while not unique were found in 54 accessions. The gliadin patterns of Chinese wheat cultivars and lines greatly differed from the patterns of wheat lines from other countries. Three patterns, E, J, H, M, N and O in the ω-zone had not previously been reported. Three wheat zones,the Northern Winter Wheat Region, the Yellow and Huai Valley River valleys Winter Wheat Region and the Southwestern Winter Wheat Region,in China showed different frequencies in their gliadin patterns. This information can be used to monitor genetic diversity with Chinese wheat germplasm. 2. To analyse the relationship between the loci and characteristics quality, we utilized the 228 cultivars/lines. The results showed that : For protein content, Glu-D1 >Glu-B3>Glu-A1=Glu-B1>Glu-A3=Glu-D3. For GMP content, Glu-A3>Glu-B3 >Glu-D1>Glu-B1>Glu-A1>Glu-D3. For wet gluten content, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1. For Zeleny sedimentation value, Glu-A1>Glu-B3> Glu-D3>Glu-D1>Glu-B1>Glu-A3, For SDS sedimentation value, Glu-B3>Glu-A1= Glu-D1= lu-A3>Glu-D3>Glu-B1。For protein content, the best combination of 6 loci is (1,17+18,5+10,Glu-A3e, Glu-B3g,Glu-D3b). For wet gluten content, the best combination of 6 loci is (1,6+8,5+10,Glu-A3d,Glu-B3c,Glu-D3b). For Zeleny sedimentation value, the best combination of 6 loci is (N,17+18,5+10,Glu-A3d, Glu-B3d, Glu-D3b). For SDS sedimentation value, the best combination of 6 loci is(7+8,2.2+12,Glu-A3b, Glu-B3g,Glu-D3b)。Additional, we analysed the relationship between the subunits 5+12 and 2.2+12, think that 5+12 was negative for quality, 2.2+12 is postive for quality. It should be effective utilized. 3. It’s the first time to utilize RILs to study the relationship between subunits expression quantity and characteristics quality. The results showed that: For single subunit, the expression quantity of 7 is the highest. Then the 2, 5, 12 and 10. The expression of subunit 9 and 1 is the lowest. Subunit N is not expressed. For subunits, the expression quantity of x type and y type are 2+12>5+10>7+9>17+18. The significant relation of 5% only showed between the expression quantity of subunit 10 and protein content. The relationship between expression quantity of others and characteristic quality was not significant. For x type/ytype, 2/12 and 5/10 is negative relation insignificant level. For the subunit(s) in a loci, Only 2+12 effect SDS sedimentation value negative in significant level. 4. With RILs 99G45/Jing 771 and Pm97034/Jing 771, we found that: The effective of Glu-A1, Glu-D3 and Glu-D1 * Glu-D3 for protein content is significant at 5% level. The effect of other loci for protein wre not significant. For SDS sedimentation value, the effect of Glu-D1is the highest, which contribution is 4.2 % .Then the Glu-B1, contribution is 3.3%. The effect of other loci for SDS sedimentationvalue were not significant. In total, for protein content: Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3; for SDS sedimentationvalue: Glu-D1>Glu-B1> Glu-D3>Glu-A1>Glu-B3. The effect of alleles in Glu-D1 and Glu-D3 loci are significant at 1% or 5%. In Glu-A1, 1>N; Glu-B1, 7+9>17+18>14+15; Glu-D, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. For SDS sedimentation, Glu-A1, 1>N; Glu-B1, 7+9=17+18>14+15; Glu-D1, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. The best combinations for SDS sedimentation value is 1,7+9,5+10,GB,GD. 5. Because of the difference of GB and PB for SDS sedimentation value, we selected the specific primer for LMW-GS loci to amplified the Glu-B3 of Jing771, 99G45and Pm97034. We got 3 amplify fragment (Gene Bank accession number are DQ539657-DQ539659). We found that the fragment of Pm97034 were deleted a repetitive 7 amino acid domain, which is perhaps the reason effect the gluten strength. Furthermore, in the position 124 of sequence 99G45, L has been replaced with P. Position 158, T replaced M, which may be the reason why the Glu-B3 locus of 99G45 is prefer to Pm97034 when refer to SDS sedimentation value. 6. Comparing the results of RILs and common wheat, we found that perhaps just the1BL/1RS made the difference of loci in different accession.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of unmalted oats or sorghum in brewing has great potential for creating new beer types/flavors and saving costs. However, the substitution of barley malt with oat or sorghum adjunct is not only innovative but also challenging due to their specific grain characteristics. The overall objectives of this Ph.D. project were: 1) to investigate the impact of various types and levels of oats or sorghum on the quality/processability of mashes, worts, and beers; 2) to provide solutions as regards the application of industrial enzymes to overcome potential brewing problems. For these purposes, a highly precise rheological method using a controlled stress rheometer was developed and successfully applied as a tool for optimizing enzyme additions and process parameters. Further, eight different oat cultivars were compared in terms of their suitability as brewing adjuncts and two very promising types identified. In another study, the limitations of barley malt enzymes and the benefits of the application of industrial enzymes in high-gravity brewing with oats were determined. It is recommended to add enzymes to high-gravity mashes when substituting 30% or more barley malt with oats in order to prevent filtration and fermentation problems. Pilot-scale brewing trials using 10–40% unmalted oats revealed that the sensory quality of oat beers improved with increasing adjunct level. In addition, commercially available oat and sorghum flours were implemented into brewing. The use of up to 70% oat flour and 50% sorghum flour, respectively, is not only technically feasible but also economically beneficial. In a further study on sorghum was demonstrated that the optimization of industrial mashing enzymes has great potential for reducing beer production costs. A comparison of the brewing performance of red Italian and white Nigerian sorghum clearly showed that European grown sorghum is suitable for brewing purposes; 40% red sorghum beers were even found to be very low in gluten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Micronutrients are part of many crucial physiological plant processes. The combined application of N and micronutrients helps in obtaining grain yield with beneficial technological and consumer properties. The main micronutrients needed by cereals include Cu, Mn, and Zn. The subject of this study was to determine yield, quality indicators (protein content and composition, gluten content, grain bulk density, Zeleny sedimentation index, and grain hardness), as well as mineral content (Cu, Zn, Mn, Fe) in winter wheat grain ( Triticum aestivum L.) fertilized by foliar micronutrient application. A field experiment was carried out at the Educational and Experimental Station in Tomaszkowo, Poland. The application of mineral fertilizers (NPK) supplemented with Cu increased Cu content (13.0%) and ω, α/β, and γ (18.7%, 4.9%, and 3.4%, respectively) gliadins in wheat grain. Foliar Zn fertilization combined with NPK increased Cu content (14.9%) as well as high (HMW) and low molecular weight (LMW) glutenins (38.8% and 6.7%, respectively). Zinc fertilization significantly reduced monomeric gliadin content and increased polymeric glutenin content in grain, which contributed in reducing the gliadin:glutenin ratio (0.77). Mineral fertilizers supplemented with Mn increased Fe content in wheat grain (14.3%). It also significantly increased protein (3.8%) and gluten (4.4%) content, Zeleny sedimentation index (12.4%), and grain hardness (18.5%). Foliar Mn fertilization increased the content of ω, α/β, and γ gliadin fractions (19.9%, 9.5%, and 2.1%, respectively), as well as HMW and LMW glutenins (18.9% and 4.5%, respectively). Mineral NPK fertilization, combined with micronutrients (Cu + Zn + Mn), increased Cu and Zn content in grain (22.6% and 17.7%, respectively). The content of ω, α/β, and γ gliadins increased (20.3%, 10.5%, and 12.1%, respectively) as well as HMW glutenins (7.9%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physicochemical and nutritional properties of two fruit by-products were initially studied. Apple pomace (AP) contained a high level of fibre and pectin. The isolated AP pectin had a high level of methylation which developed viscous pastes. Orange pomace also had high levels of fibre and pectin, and it was an abundant source of minerals such as potassium and magnesium. Due to the fibrous properties of orange pomace flour, proofing and water addition were studied in a bread formulation. When added at levels greater than 6%, the loaf volume decreased. An optimised formulation and proofing time was derived using the optimisation tool; these consisted of 5.5% orange pomace, 94.6% water inclusion and with 49 minutes proofing. These optimised parameters doubled the total dietary fibre content of the bread compared to the original control. Pasting results showed how orange pomace inclusions reduced the final viscosity of the batter, reducing the occurrence of starch gelatinisation. Rheological properties i.e. the storage modulus (G') and complex modulus (G*) increased in the orange pomace batter compared to the control batter. This demonstrates how the orange pomace as an ingredient improved the robustness of the formulation. Sensory panellists scored the orange pomace bread comparably to the control bread. Milled apple pomace was studied as a potential novel ingredient in an extruded snack. Parameters studied included apple pomace addition, die head temperature and screw speed. As screw speed increased the favourable extrudate characteristics such as radical expansion ratio, porosity and specific volume decreased. The inclusion of apple pomace had a negative effect on extrudate characteristics at levels greater than 8% addition. Including apple pomace reduced the hardness and increased the crispiness of the snack. The optimised and validated formulation and extrusion process contained the following parameters: 7.7% apple pomace, 150°C die head temperature and a screw speed of 69 rpm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaxation behavior was measured for dough, gluten and gluten protein fractions obtained from the U.K. biscuitmaking flour, Riband, and the U.K. breadmaking flour, Hereward. The relaxation spectrum, in which relaxation times (tau) are related to polymer molecular size, for dough showed a broad molecular size distribution, with two relaxation processes: a major peak at short times and a second peak at times longer than 10 sec, which is thought to correspond to network structure, and which may be attributed to entanglements and physical cross-links of polymers. Relaxation spectra of glutens were similar to those for the corresponding doughs from both flours. Hereward gluten clearly showed a much more pronounced second peak in relaxation spectrum and higher relaxation modulus than Riband gluten at the same water content. In the gluten protein fractions, gliadin and acetic acid soluble glutenin only showed the first relaxation process, but gel protein clearly showed both the first and second relaxation processes. The results show that the relaxation properties of dough depend on its gluten protein and that gel protein is responsible for the network structure for dough and gluten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subtractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The beta-sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, beta-sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; beta-sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize gluten feed (MGF) is a co-product of wet milling of maize, and is composed of structures that remain after most starch, gluten and germ has been extracted from the grain. Although currently used in dog foods, its digestibility and energy values have not been documented. Two techniques were used to determine nutrient digestibility of MGF for dog foods. Both techniques used extruded diets fed to Beagle dogs, with six replicates per diet. The first study used a difference method in which 300 g/kg of a reference diet was replaced by MGF. Based on the difference method, the coefficient of total tract apparent digestibility (CTTAD) of MGF was 0.53 for dry matter (DM), 0.69 for crude protein (CP), 0.74 for fat, 0.99 for starch, and 0.55 for gross energy (GE). The calculated metabolizable energy (ME) of MGF was 7.99 MJ/kg (as-fed). The second study used a regression method and included a basal diet and a basal diet with 70, 140 and 210 g MGF/kg of diet (as a substitute for maize starch). Maize gluten feed inclusion resulted in a linear reduction of CTTAD of DM (R(2)=0.99; P<0.001), CP (R(2)=0.95; P=0.002), fat (R(2)=0.87; P=0.009). starch (R(2)=0.81; P<0.001), and GE (R(2)=0.99; P<0.001). Faecal production increased linearly from 56 g to 107 g/dog/d (R(2)=0.99; P<0.001), with a linear reduction of faecal DM (R(2)=0.99: P<0.001) and a linear increase in faecal lactic acid concentration (P<0.02). Both urine (R(2)=0.77; P=0.029) and faeces (R(2)=0.92: P=0.019) showed a linear reduction in pH. Results of ingredient MAD obtained by the regression and difference methods were close (6% or less of variation) for CP, fat, and starch, and also for ME content (1.4% higher for the difference method), but the two methods disagreed on calculated CTTAD of DM and organic matter. The high dietary fiber content of MGF (382 g/kg) may explain the low digestibility of this ingredient. Maize gluten feed could be a useful ingredient for formulations designed to have low energy or reduce the urine pH of dogs. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research was undertaken to explore the influence of fructooligosaccharides (FOS) on the functional and thermal properties of sour cassava starch and the quality characteristics of gluten-free (GF) cheese bread. Fructooligosaccharides were used to replace sour cassava starch at substitution level of 9% (SF1), 17% (SF2), and 29% (SF3). The functional and thermal properties of the starch-FOS mixtures were determined by the water absorption index (WAI), water solubility index (WSI), pasting profile analysis, thermal transition temperatures and enthalpy of gelatinization. Moreover, the GF cheese breads with starch-FOS mixtures were analyzed for height, diameter, weight, specific volume and dough moisture content. The sample with the highest FOS content (SF3) presented the lowest WAI (1.44), peak (62.4 rapid visco units (RVU), breakdown (53.4 RVU), final (13.8 RVU), and setback (4.9 RVU) viscosities, dough moisture content (31.7%), and enthalpy of gelatinization (9.5 J/g) and the highest WSI (29.4%) and pasting temperature (69.1 degrees C). The height, diameter and specific volume of GF cheese bread samples made from sour cassava starch were 3.14 cm, 6.35 cm, and 1.49 cm(3)/g, respectively. The SF1 mixture samples resulted in a 3.01 cm height, 6.34 cm diameter, and 1.55 cm(3)/g specific volume. According to Brazilian food labeling regulations, the latter product cannot be categorized as a good source of fiber because the minimum level of fiber per portion was not reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Gliadins are a major component of gluten proteins but their role in the mixing of dough is not well understood because their contribution to wheat flour functional properties are not as clear as for the glutenin fraction. Methodology/Principal Findings Transgenic lines of bread wheat with γ-gliadins suppressed by RNAi are reported. The effects on the gluten protein composition and on technological properties of flour were analyzed by RP-HPLC, by sodium dodecyl sulfate sedimentation (SDSS) test and by Mixograph analysis. The silencing of γ-gliadins by RNAi in wheat lines results in an increase in content of all other gluten proteins. Despite the gluten proteins compensation, in silico analysis of amino acid content showed no difference in the γ-gliadins silenced lines. The SDSS test and Mixograph parameters were slightly affected by the suppression of γ-gliadins. Conclusions/Significance Therefore, it is concluded that γ-gliadins do not have an essential functional contribution to the bread-making quality of wheat dough, and their role can be replaced by other gluten proteins

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif de cette maîtrise est de développer une matrice alimentaire sans gluten par l’incorporation des protéines de canola (PC) dans une farine de riz blanc afin d’offrir aux personnes intolérantes au gluten un produit de bonne qualité d’un point de vue organoleptique (volume massique, structure alvéolaire et couleur) et de valeur nutritionnelle. La matrice sélectionnée est du pain à base de farine de riz blanc. Cinq formulations ont été testées dans la première partie de ce travail : témoin-1 (blé tendre), témoin-2 (100% riz), pain de riz +3% PC, pain de riz + 6% PC, pain de riz + 9% PC. Les produits obtenus ont été caractérisés à toutes les étapes de fabrication en utilisant différentes techniques : poussée volumique, variation thermique au cours des étuvages et de la cuisson, pH (acidité), perte d’eau, volume massique, analyse colorimétrique, dosage des protéines et analyse du profil de la texture. Dans la deuxième partie, deux variables indépendantes ont été additionnées; soit shortening (1, 2, 3%) et gomme de xanthane (0.5, 1, 1.5%), dans le but d’améliorer le volume massique de la meilleure formulation obtenue dans l’étape précédente. Ensuite, des essais de correction ont été attribués aux produits obtenus par l’introduction du bicarbonate de sodium (0.5, 1, 1.5%) et d’huile de canola à la place du shortening (1, 2, 3%). Les tests de panification ont donné différents volumes massiques et structures alvéolaires qui étaient jugés de qualité inférieure à celle du témoin-1 (2.518 mL/g), mais largement supérieure à celle du témoin-2 (1.417 mL/g). Le meilleur volume massique obtenu est de 1.777 mL/g, correspondant à celui du pain obtenu par la combinaison 6%PC+0.5%GH+B 1.5%+ H3%. Finalement, les résultats de ce projet ont montré l’impact positif de l’incorporation des protéines de canola dans un pain sans gluten à base de farine de riz blanc. Ce travail constitue une contribution à la possibilité de substituer le gluten par d’autres protéines ayant de bonnes propriétés techno-fonctionnelles, en particulier la capacité à donner du volume au produit final.